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How Wave Interference May Help
Explain Wavefunctions and

Energy Quantization
Evguenii I. Kozliak

Department of Chemistry,

University of North Dakota,

Grand Forks, ND

ABSTRACT Illustrations based on the use of radiative waves and oscillating

strings are suggested to help explain the physical essence and develop intuitive

understanding of the basic principles of quantummechanics, such as quantiza-

tion, shape of wavefunctions, and their fundamental features. The proposed

approach is based on interference of time-independent or stationary waves,

which statistically represent effective quantum mechanical particles. The

physical significance of this principle is emphasized by tracing its origin back

to the fundamental ideas of E. Schrödinger. The suggested explanations are

suitable for chemistry undergraduate students and are compatible with cover-

ing optics and Fourier-transform spectroscopy in analytical chemistry classes.

Supplemental materials are available for this article. Go to the publisher’s

online edition of Spectroscopy Letters for the following free supplemental

resource: Historical Persperctive.

INTRODUCTION

Students’ fear of quantum mechanics is well-known. Their common

perception is that this discipline is abstract and purely mathematical, so it can-

not be comprehended by using common sense and prior background in chem-

istry or physics. This unfortunate perception may be further exacerbated by

the extensive use of calculus if the essential mathematics is not complemented

by common-sense-based physics. If this notion persists, intuitive understand-

ing of the subsequent topics, e.g., spectroscopy, becomes difficult to achieve.[1]

This problem appears to be more pronounced among chemistry majors as

compared to physics students because chemistry majors tend to demand

pictures and illustrations, rather than calculus-based mathematical formulas,

for understanding the basic concepts of their discipline.[2] Thus, traditional

coverage of quantum mechanics, starting with a highly mathematical list

of postulates, may not be the optimal approach for this group of students.

In this article, I suggest an approach targeting the achievement of intuitive,

physics-based (as opposed to mathematics-based) understanding of the most

essential quantum mechanical phenomena. I shall show how quantum

mechanics may be qualitatively introduced by using simple physical,

algebraic, and trigonometry considerations. The treatment may be combined
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with covering optics and Fourier-transform spectro-

scopy in analytical chemistry classes.

Coupling a Quantum Mechanical

Particle (an ‘‘Effective Wave’’) and Its
Time-Independent Wavefunction

My approach is based on the inherent connection

of quantum mechanical particles to waves and on

explaining their basic features by using easily

comprehensible systems, e.g., oscillating flexible

strings and radiative waves. Many textbooks and

papers illustrate the basic quantum phenomena by

using these well-known classical analogies.[3–6]

However, a direct connection between quantum

mechanical particles and waves is never provided.

This vagueness, intentional rather than accidental,

is based on an important physical reason, which is

explained in the historical review in the Appendix.

In a nutshell, Schrödinger’s original attempt to

describe quantum particles as waves (W, continuous

in time) was found to be inadequate, in part, due to

own subsequent work.[7] By contrast, the statistics-

only treatment, involving the use ofW �W distribution

function, has been shown to be correct. Its essence

can be summarized in Feynman’s concise statement

that ‘‘wavefunctions cannot be viewed as ‘‘smeared’’

electrons but used only in a probabilistic sense. Wher-

ever the electron is located, it is a point charge.’’[8]

A Way to Reformulate the Wavefunction’s

Definition

However, the current definition of W as a

mathematical function completely describing parti-

cle’s physical properties assumes that a wavefunction

can be of any form (not necessarily wave-like), as

long as it complies with the required properties

(being single-valued, square-integrable, continuous,

etc.). This definition implicitly states that the parti-

cle’s wave function per se bears no physical signifi-

cance except for being a part of the probability

distribution function, W �W.

Yet, this definition can be reconciled with that of

Schrödinger (though only for time-independent

waves) without conflicting with the above-quoted

statement of Feynman. The objection to equalizing

the quantum particle and its wavefunction can

be lifted if a time-independent wavefunction is con-

sidered as an effective stationary representation of

the corresponding quantum particle. This principle

can be traced back to the fundamental ideas of

E. Schrödinger who proposed an ‘‘ergodic’’ hypoth-

esis for W, looking for an analogy with Boltzmann’s

statistical description of microstates.[7] An effective

electron or other particle with a significant de

Broglie’s wavelength is to be considered in a prob-

abilistic sense, i.e., in the frequency domain rather

than in the time domain. A combination of its spatial

‘‘snapshots’’ given infinite time (thus, producing a

continuous function in space) is sufficient to present

a ‘‘statistical,’’ time-independent stationary wave to

be considered henceforth.

For a physicist, this definition may look trivial

because, at first glance, it implicitly defines a real

time-independent wavefunction as a square root of

its WW product for real functions. The reason for

using this definition lies more in education than in

physics because it visualizes wavefunctions as waves

and provides common-sense-based explanations of

several abstract concepts, as shown below. The next

section sets a goal of building the WW product and

showing its physical significance starting with the

wave function.

The Particle-in-a-Box and Phase
Orthogonality

Bearing in mind the statistical nature of wavefunc-

tions, let us consider the simplest quantum mechan-

ical problem, a particle in a one-dimensional ‘‘box’’

having a zero potential energy within the box and

infinite potential energy outside it. In more general

terms, such a quantum mechanical particle (having

the wavelength significantly exceeding its dimension,

e.g., an electron) represents a wave confined (snug-

gly fitting) into a box. This problem is a subset of a

more general (yet abstract) case of an unrestricted

standing wave spanning through the entire Cartesian

space. Henceforth, these two related quantum-

mechanical problems will be considered along with

their corresponding classical analogs, the oscillating

string and radiative wave, respectively.

A wave (if not distorted by potential energy) is

described by one of the periodic trigonometric func-

tions, either a sine or a cosine. Given the boundary con-

ditions for the particle in the box (thewave cannot exist,

having a zero value, on the box boundaries), it must be
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a sine for the particle-in-a-box spatial component; the

time component is defined by initial conditions.

The Oscillating String

The oscillating motion of a string is described by a

continuum of time-dependent functions taking con-

secutively all of the values between the amplitude

positions as shown in Fig. 1 (all figures in this paper

were generated using Mathematica#, Wolfram

Research, Champaign, IL). The number of maxima or

minima in this picture varies by the different ways in

which a string is pinched.[3,4] The string’s oscillation

is due to the superposition (interference) of two travel-

ing or progressing waves:[19]

nðx; tÞ ¼ nmax sinðwt � kxÞ þ nmax sinðwt þ kxÞ ð1Þ

where n is the time-dependent location (displace-

ment) on the ordinate axis, nmax is the amplitude

value, and w and k are the frequency and wave

number, respectively. The cosine wave can also be

selected to account for the oscillation in time between

the amplitude waves (this complementary descrip-

tion is provided in the Appendix). As a result of these

waves’ constructive interference, a standing wave can

be presented using a well-known trigonometric trans-

form called the sine expansion:[19]

nðx; tÞ ¼ 2nmax sinðkxÞ cosðwtÞ ð2Þ

The Particle in a Box as a Time-Independent

Analog of the Oscillating String

In contrast with classical waves, only the ampli-

tude waves are applicable for quantum-mechanical

particles to meet the requirements set by the

uncertainty principle as discussed above (see the

Appendix for more detail). If time is removed from

consideration (as stressed by the use of the lower

case for w), Eq. (3) is obtained:

w ¼ A sinðkxÞ ð3Þ

Unlike Eq. (2) for the oscillating string, thewavefunc-

tion in Eq. (3) does not define the displacement, n(x;t),
at each location and each moment of time, thus satis-

fying the uncertainty principle. Figure 2A-D shows the

first four wavefunctions for the particle in a box. This

figure also demonstrates that the mirror image of the

wave function represented by Eq. (1) with respect

to the x-axis (dashed lines), namely,

w ¼ �A sinðkxÞ ð4Þ

satisfies the problem’s boundary conditions (as well

as the other conditions, i.e., being an equally eligible

solution of Schrödinger’s equation as Eq. (3)). Of

course, regardless of the wavefunction’s sign, the

ww product is positive.

The functions shown in Eqs. (3)–(4) may be called

real conjugate wavefunctions because they are simi-

lar to complex conjugate wavefunctions. In both

cases, conjugate functions are mirror images of the

original functions with respect to a given axis (x);

the axis of interest, orthogonal to x, may be either

real (y) or imaginary (i). Both of these states are

essential for the system’s continuity in the 3D space;

the likelihood of the electron taking one of them is 1
2.

The connection of the quantum particle in a box

and a classical oscillating string is, thus, provided using

Fig. 2. It is the combination of a ‘‘traditional’’ time-inde-

pendent wavefunction with its real conjugate that pro-

vides two amplitudes for the string oscillating in time.

Interference of Radiative Waves

The problem of wave enhancement or cancelation

upon interference (superposition) can be considered

for radiative waves.[19] As a result of a trigonometric

analysis (the details are provided in the Appendix),

the superposition of two waves is described as

I ¼ I1 þ I2 ¼ ð< Z=2 >ÞðA2 þ B2 þ 2AB cos/Þ ð5Þ

where A and B are two waves’ amplitudes; Z¼p=n,
the momentum (p) or displacement ratio called

FIGURE 1 Standing waves on an oscillating string. Solid and

dotted lines mark the amplitude waves; dashed lines show the

string shapes between the amplitude positions at a certain

moment of time.
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‘‘impedance,’’ periodically oscillating in time, is

present in Eq. (5) as its average value over the

complete cycle; I designates the wave intensity;

and / is the phase difference between the interfering

waves. Thus, it is the product of two amplitudes

multiplied by the phase difference factor, cos/,
that defines whether two waves would interfere

constructively or destructively.

Physical Significance of the ww Product

Besides Probability

Equation (5) is fully applicable for time-

independent waves including periodical wavefunc-

tions, wn and wm, where n and m are quantum

numbers. Their product, wnwm, according to Eq.

(5), is key to the magnitude of the statistical waves’

enhancement upon interference.

Based on Eq. (5), the amplitude of the resulting

standing wave will be maximal if /¼ 0, i.e., when

two interfering wave functions of the same

amplitude coincide or, in other words, when a given

wavefunction, wn, interferes with itself to yield

the product, wnwn (Fig. 3A). By contrast, if the

phase difference /¼ p, two periodic waves are real

conjugates (wn and –wn), so they interfere destruc-

tively to cancel each other out (Fig. 3B).

The most interesting case, /¼ p=2, is presented in

Fig. 3C. The two wave functions neither enhance

nor cancel each other. Figuratively speaking, they

‘‘do not notice’’ each other, even though they occupy

the same area of space. The word ‘‘orthogonal’’ cap-

tures the spirit of this phenomenon. This 90� phase dif-

ference between wn and wm, where m 6¼ n, may be

called ‘‘phase orthogonality.’’ An example of ‘‘phase-

orthogonal’’ functions is a sine and a cosine. The pro-

duct of two such wavefunctions, as an average value

over a complete cycle (or as an integral over a com-

plete cycle for normalized functions), is equal to zero.

Application of the Kronecker Delta

If the mutual lineup of a wavefunction with itself is

not perfect, i.e., if their corresponding maxima or

minima do not occur at the same value of x

(i.e., cos/ is between zero and p=2), the maximum

positive interference cannot be achieved. A partial

enhancement would yield a lower amplitude of

the resulting standing wave. However, any nonzero

lower amplitude is impossible, as pointed out by

FIGURE 2 The wavefunctions of the particle in a box shown in solid lines for n=1–4 (A–D, respectively). The ‘‘real conjugates’’ of these

wavefunctions (mirror images with respect to the x-axis) are shown as dashed lines.
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Schrödinger[10,7] because this would necessitate the

application of work for the wave to keep its energy

constant (i.e., similar to friction in mechanical systems).

Such a wave would not be stable in time by itself.

The phenomenon of ‘‘quantum friction,’’ i.e.,

instability of a system in time, is well-known to

modern physics.[11–13] For infinite time, i.e., for

most of the problems relevant to teaching quantum

mechanics and spectroscopy for chemistry students,

quantum friction has to be zero.

Note that the solutions of all basic quantum mech-

anical problems considered in physical chemistry are

eligible for this consideration because they are

time-independent, i.e., statistically or effectively

achieved by the corresponding systems. This

approach is fully applicable to spectroscopy only

for ‘‘long-time’’ solutions. Most of the spectroscopic

measurements are done on such a long time-scale

that, given the inherently high frequency of elec-

tronic, vibrational, or rotational motion, infinite time

is a good approximation. Significant ‘‘noise’’ shows

up on a shorter time scale, e.g., NMR in the time

domain; then, of course, time cannot be ignored

unless the data are transferred into the frequency

domain by applying Fourier transforms.

Thus, only two options (described by the

Kronecker delta) are possible for two wavefunctions

occupying the same area of space: it is either a

perfect enhancement (yielding the maximum

amplitude), or orthogonality, with nothing in

between. This is the physical essence of the W �W
product and the explanation of the necessity of its

integration over the entire cycle.

The statistical consideration of time-independent

wavefunctions necessitates the integration of this

product over the entire cycle for periodical functions.

If the system’s wavefunction is normalized, it conco-

mitantly yields the particle’s distribution function. In

a historical perspective, Born, being influenced by

Schrödinger’s papers, specifically pointed out

that the W �W product reflects the amplitudes of

Schrödinger’s time-dependent ‘‘matter waves,’’ i.e.,

referring to the case shown in Figs. 1 and 2.[14] This

integral is, thus, equal to the Kronecker delta for

two identical normalized wavefunctions (d¼ 1) or

orthogonal wavefunctions (d¼ 0), depending on

whether m and n in the wm
� wn product are equal

to each other or not, respectively.

Both ‘‘phase’’ orthogonality and ‘‘spatial’’ ortho-

gonality (e.g., px, py, and pz orbitals) reflect, essen-

tially, the same phenomenon: lack of enhancement

of stationary, statistical waves by each other, which

is mandatory for achieving positive interference.

Orthogonality: Expansion to
Quantum Mechanical Problems

General

The principle of a wavefunction’s maximum

enhancement upon its self-interference, with ortho-

gonality as the only alternative (for different quantum

FIGURE 3 Interference of radiative waves with the phase differ-

ences of (A) zero; (B) p; and (C) p=2. The original waves are shown

as dashed lines, whereas the standing waves resulting from their

interference are shown as bold solid lines (the horizontal line in

Part B).
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numbers) can be expanded to basic quantum

mechanical problems. The only adjustment required

is that the wm
� wn product is to be integrated over the

entire allowed space rather than over a complete cycle.

A complete cycle, i.e., 2p, defines the entire available

‘‘angular space’’; thus, this extension is justified.

For periodic functions, e.g., a particle in a box, the

entire allowed space contains n=2 cycles. For non-

periodic functions (e.g., hydrogen atom, harmonic

oscillator), trigonometric considerations are not

applicable. Even for a particle in a box, the concept

of phase difference is not applicable anymore

because the wave functions with different quantum

numbers contain different amounts of cycles. Yet,

when the ‘‘box’’ becomes circular, as for a particle

on a ring, phase orthogonality is valid. The connec-

tion between the linear and circular boxes, essential

for the expansion of the entire cycle to the entire

space, is stressed in the rest of the paper.

Thus, a limitation of the suggested approach is

that the wm
� wn product’s physical significance may

be illustrated only by using either space-unrestricted

or circular stationary waves. Phase orthogonality

cannot be shown for nonperiodic cases, to be

replaced with just ‘‘orthogonality.’’

The Physical Significance of Complex

Functions

The superposition of a complex function, aþib,

and its conjugate, a-ib, results in vanishing of the com-

plex component, just as a wave and its real conjugate

cancel each other out (Fig. 3B). This treatment allows

for having time in quantummechanical equations as a

complex exponential function; it vanishes upon its

interference with a conjugate, leaving just the real trig-

onometric component, which is time-independent.

The wm
� wn product of a complex function and

its conjugate, equal to a2 þb2, is real. Thus, the

essential choice between the wave functions’

enhancement or orthogonality depends on the inte-

gration of this function over the entire allowed

space, just as for the above-considered real func-

tions. Note that the b2 term ‘‘extracts’’ the physical

essence of the complex variable and contributes to

the mutual enhancement by complex conjugate

functions in their projection to the real space. The

use of complex functions is the mathematical

embodiment of the uncertainty principle; even

though one cannot define a real wavefunction at

any given moment of time, its statistical picture is

real and valid.

Applications

Energy Quantization

Figure 2A-D shows that, for a particle in a box,

one, two, three, etc., half-waves (which I figuratively

call ‘‘bumps’’ to students) perfectly fit into a given

box. At first glance, this phenomenon may be due

to satisfying the boundary conditions (the wavefunc-

tion cannot have a nonzero value at the box’s edge).

Similarly, the necessity of fitting n half-waves into a

circular box was demonstrated in the seminal

paper of de Broglie[15,16] because otherwise the

wavefunction would not remain single-valued upon

subsequent revolutions around the circle.

To complement this mathematical reason, the

need for quantization may be alternatively shown

through the interference of statistical circular waves.

Perfect matching of nodes is mandated by the

necessity of maximum positive interference (i.e.,

exact matching of the wavefunction’s maxima and

minima, as in Fig. 3A), while an imperfect

match would create multiple conjugate functions

with nonmatching nodes.

Due to imperfect enhancement, the product of

these mismatched waves cannot anymore yield the

unity upon integration over the full circle (due to

the nonzero phase difference). However, then, as

shown in the section on Kronecker’s delta, the only

alternative is that it has to be equal to zero, i.e.,

Fig. 3B. Thus, the primary reason for fitting n bumps

into a box, either linear or circular, is due to the

necessity of matching the wavefunctions’ maxima

or minima rather than merely satisfying the boundary

conditions. This important principle will be used in

the next three subsections.

Finding Energy Values

Barrow demonstrated how the principle of fitting

n half-waves of a certain wavelength, k, into a linear

box of a certain length (a) can illustrate quantiza-

tion.[17] He showed that just assuming this principle

allows one to calculate the system’s quantized ener-

gies without solving the Schrödinger equation.

The underlying idea, using the analogy with an

oscillating string, is fitting n bumps into the box’s
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length:

nk=2 ¼ a ð6Þ

Then, the wavelength is expressed through

momentum using de Broglie’s relation, k¼h=(mv).

Combining these formulas yields the following

equation, after a few algebraic steps:

mv2=2ðkinetic energy; EÞ ¼ n2h2=ð8ma2Þ ð7Þ

This is the expression for energy of a quantum

particle unaffected by potential energy.

A similar treatment was provided by Barrow for a

particle on a ring, resulting in the following equation:

mv2=2 (kinetic energy)¼n2h2=(8p2ma2).[17] Of

course, solving the pertinent differential Schrödinger’s

equation yields exactly the same solution, thus

providing a verification of this approach.

The Harmonic Oscillator

Fitting a whole number of half-waves into the

entire allowed space can be readily expanded to

any other common quantum mechanical problem

including the harmonic oscillator and hydrogen atom.

Of course, in any of these cases a simple algebraic

way of finding a solution of the Schrödinger

equation, demonstrated in the previous subsection,

is impossible. However, the qualitative shape of the

corresponding wavefunctions can still be predicted

because n alternating maxima and minima are

generated. These maxima and minima should be

centered around the source of potential energy,

e.g., classical turning points for the harmonic

oscillator or the origin for the hydrogen atom.

Symmetry considerations should be applied as well.

The harmonic oscillator must exhibit a single

maximum for the ground state, energy level 1

(Fig. 4). Given that there is only one maximum, it

must be located, out of symmetry considerations, at

x¼ 0. Note the qualitative similarity of the shape of

ground-state wavefunctions for the particle in a

box and harmonic oscillator. The allowed space

(i.e., the ‘‘box’’) in the harmonic oscillator stretches

from minus infinity to plus infinity. For the first

excited state (energy level 2), there is one minimum

and one maximum located between the origin and

two classical turning points symmetrically situated

around the origin. The introduction of potential

energy at the classical turning points results in a

distortion of the original sine function to yield a non-

periodic function, yet retaining a wave-like shape.

For the third quantum level, the combined num-

ber of maxima and minima (i.e., bumps) must be

three, located between the origin and classical turn-

ing points (Fig. 4). The positions of these multiple

crowded maxima and minima should be moving clo-

ser to the turning points for increasing quantum

numbers, which is shown in many textbooks. Note

that the real conjugates of the functions provided

in Fig. 4 are equally valid, so the maxima and minima

switch if –wn functions are considered.

The Hydrogen Atom

The n-bumps principle is also applicable to the

hydrogen atom; although, for a valid comparison,

one needs to distinguish between s, p, d, etc. orbitals,

i.e., select and set a certain orbital or azimuthal quan-

tum number, ‘. Given this, positive radial wavefunc-

tions for the lowest-level 1s, 2p, and 3d orbitals must

all have one maximum; the wavefunctions for next

quantum levels, e.g., 2s, 3p, and 4d, must have one

maximum and one minimum, etc. (as shown in

Fig. 5 for 2s and 3p). Any wavefunctions with ‘> 0

start from the origin to account for the forbidden area

of angular space (H).

Mathematically, n bumps in the wavefunctions of

higher quantum levels are created by the multipli-

cation of pertinent ground state wavefunctions, with

n¼ 1 [exp(-x2) for the harmonic oscillator and

exp(-x) for the hydrogen atom], by the pertinent

polynomials of (n-1)-th power (Legendre and

LaGuerre polynomials, respectively). Note that the

FIGURE 4 Sketches of wavefunctions for the first three energy

levels of the harmonic oscillator. The labels are I, II, and III for the

first, second, and third energy levels, respectively.

615 How Wave Interference May Help Explain Wavefunctions

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
4
2
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



‘‘wavy’’ shape of any of these functions is consistent

with the consideration of a particle’s wavefunction

(or its conjugate) as an effective or statistical rep-

resentation of the corresponding quantum particle.

Thus, such wavefunctions may be viewed as period-

ical trigonometric functions (sine or cosine) distorted

by the potential energy specific for each quantum

mechanical problem.

Other Applications

One more use of the oscillating string analogy was

provided by Silbey et al. who showed that the math-

ematical expression of the px operator can be

obtained from the differential equation of string

oscillation.[18]

Another application of sound waves explaining

the fundamental principle of linear combinations

was suggested by Mortimer.[4] The same musical

notes obtained on different musical instruments

produce slightly different sounds, due to the small

instrument-specific contributions of harmonics, i.e.,

waves with higher quantum numbers:

nðx; tÞ ¼ R½bnAn sinðnpx=aÞ sinðwtÞ� ð8Þ

where bn is a contribution of a soundwith a given n, the

number of standing half-waves fitting into the string.

Applied to statistical waves, this principle leads to

simple basis sets, linear combinations of wavefunc-

tions (orbitals for atoms or molecules) with unequal

and variable (under changing conditions) contribu-

tions. It may also be applied to linear combinations

of two different wavefunctions with equivalent par-

ticipation (e.g., orbital hybridization); the principle

of harmony of two different sounds is well-known

in music. Of course, then, in order to generate nor-

malizable statistical distribution functions, the sum

of squares of the coefficients in front of the superim-

posed wavefunctions in Eq. (8) has to be equal to 1,

i.e., satisfying one of the fundamental postulates of

quantum mechanics.

CONCLUSION

The source of energy quantization is interference of

time-independent or stationary waves (wavefunc-

tions), which statistically represent effective quantum

mechanical particles. Depending on the product of

interfering time-independent wavefunctions, either

maximum enhancement (for self-interference) or

no enhancement (orthogonality for two different

wavefunctions) occurs. The shape of wavefunctions

and their fundamental features (symmetry, number,

and tentative location of maxima or minima) may be

intuitively understood by using the proposed principle

of fitting n half-waves into the entire allowed space and

considering the distortion of trigonometric waves by

potential energy, which is specific for a given problem.
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FIGURE 5 Sketches of the nonnormalized wavefunctions for

low-lying energy levels of the hydrogen atom, radial component

only: (A) 1s, 2s, and 3s orbitals; and (B) 2p and 3p orbitals. The

labels are I, II, and III for the first, second, and third energy levels,

respectively.
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