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How Wave Interference May Help
Explain Wavefunctions and
Energy Quantization

Evguenii I. Kozliak

Department of Chemistry, ABSTRACT Illustrations based on the use of radiative waves and oscillating
University of North Dakota, strings are suggested to help explain the physical essence and develop intuitive
Grand Forks, ND understanding of the basic principles of quantum mechanics, such as quantiza-

tion, shape of wavefunctions, and their fundamental features. The proposed
approach is based on interference of time-independent or stationary waves,
which statistically represent effective quantum mechanical particles. The
physical significance of this principle is emphasized by tracing its origin back
to the fundamental ideas of E. Schrodinger. The suggested explanations are
suitable for chemistry undergraduate students and are compatible with cover-
ing optics and Fourier-transform spectroscopy in analytical chemistry classes.

Supplemental materials are available for this article. Go to the publisher’s
online edition of Spectroscopy Letters for the following free supplemental
resource: Historical Persperctive.

INTRODUCTION

Students’ fear of quantum mechanics is well-known. Their common
perception is that this discipline is abstract and purely mathematical, so it can-
not be comprehended by using common sense and prior background in chem-
istry or physics. This unfortunate perception may be further exacerbated by
the extensive use of calculus if the essential mathematics is not complemented
by common-sense-based physics. If this notion persists, intuitive understand-
ing of the subsequent topics, e.g., spectroscopy, becomes difficult to achieve

This problem appears to be more pronounced among chemistry majors as
compared to physics students because chemistry majors tend to demand
pictures and illustrations, rather than calculus-based mathematical formulas,
for understanding the basic concepts of their discipline.”” Thus, traditional
coverage of quantum mechanics, starting with a highly mathematical list

of postulates, may not be the optimal approach for this group of students.
Received 1 September 2009; 1% , May p pp group

accepted 2 February 2010. In this article, T suggest an approach targeting the achievement of intuitive,
Address correspondence to Evguentii l. physics-based (as opposed to mathematics-based) understanding of the most
Kozliak, Department of Chemistry, essential quantum mechanical phenomena. I shall show how quantum
University of North Dakota, Grand hani | b litatively i d d b . . | hvsical
Forks, ND 58202-9024. E-mail: mechanics may be qualitatively introduced by using simple physical,
ekozliak@chem.und.edu algebraic, and trigonometry considerations. The treatment may be combined
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with covering optics and Fourier-transform spectro-
scopy in analytical chemistry classes.

Coupling a Quantum Mechanical
Particle (an ""Effective Wave'') and Its
Time-Independent Wavefunction

My approach is based on the inherent connection
of quantum mechanical particles to waves and on
explaining their basic features by using easily
comprehensible systems, e.g., oscillating flexible
strings and radiative waves. Many textbooks and
papers illustrate the basic quantum phenomena by
using these well-known classical analogies.[3_6]
However, a direct connection between quantum
mechanical particles and waves is never provided.
This vagueness, intentional rather than accidental,
is based on an important physical reason, which is
explained in the historical review in the Appendix.

In a nutshell, Schrédinger’s original attempt to
describe quantum particles as waves (¥, continuous
in time) was found to be inadequate, in part, due to
own subsequent work.”" By contrast, the statistics-
only treatment, involving the use of ¥ * ¥ distribution
function, has been shown to be correct. Its essence
can be summarized in Feynman’s concise statement
that “wavefunctions cannot be viewed as “smeared”
electrons but used only in a probabilistic sense. Wher-
ever the electron is located, it is a point charge.”®

A Way to Reformulate the Wavefunction’s
Definition

However, the current definition of W as a
mathematical function completely describing parti-
cle’s physical properties assumes that a wavefunction
can be of any form (not necessarily wave-like), as
long as it complies with the required properties
(being single-valued, square-integrable, continuous,
etc.). This definition implicitly states that the parti-
cle’s wave function per se bears no physical signifi-
cance except for being a part of the probability
distribution function, ¥ * V.

Yet, this definition can be reconciled with that of
Schrodinger (though only for time-independent
waves) without conflicting with the above-quoted
statement of Feynman. The objection to equalizing
the quantum particle and its wavefunction can
be lifted if a time-independent wavefunction is con-
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sidered as an effective stationary representation of
the corresponding quantum particle. This principle
can be traced back to the fundamental ideas of
E. Schrodinger who proposed an “ergodic” hypoth-
esis for W, looking for an analogy with Boltzmann’s
statistical description of microstates.”’ An effective
electron or other particle with a significant de
Broglie’s wavelength is to be considered in a prob-
abilistic sense, i.e., in the frequency domain rather
than in the time domain. A combination of its spatial
“snapshots” given infinite time (thus, producing a
continuous function in space) is sufficient to present
a “statistical,” time-independent stationary wave to
be considered henceforth.

For a physicist, this definition may look trivial
because, at first glance, it implicitly defines a real
time-independent wavefunction as a square root of
its YW product for real functions. The reason for
using this definition lies more in education than in
physics because it visualizes wavefunctions as waves
and provides common-sense-based explanations of
several abstract concepts, as shown below. The next
section sets a goal of building the WY¥ product and
showing its physical significance starting with the
wave function.

The Particle-in-a-Box and Phase
Orthogonality

Bearing in mind the statistical nature of wavefunc-
tions, let us consider the simplest quantum mechan-
ical problem, a particle in a one-dimensional “box”
having a zero potential energy within the box and
infinite potential energy outside it. In more general
terms, such a quantum mechanical particle (having
the wavelength significantly exceeding its dimension,
e.g., an electron) represents a wave confined (snug-
gly fitting) into a box. This problem is a subset of a
more general (yet abstract) case of an unrestricted
standing wave spanning through the entire Cartesian
space. Henceforth, these two related quantum-
mechanical problems will be considered along with
their corresponding classical analogs, the oscillating
string and radiative wave, respectively.

A wave (if not distorted by potential energy) is
described by one of the periodic trigonometric func-
tions, either a sine or a cosine. Given the boundary con-
ditions for the particle in the box (the wave cannot exist,
having a zero value, on the box boundaries), it must be
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a sine for the particle-in-a-box spatial component; the
time component is defined by initial conditions.

The Oscillating String

The oscillating motion of a string is described by a
continuum of time-dependent functions taking con-
secutively all of the values between the amplitude
positions as shown in Fig. 1 (all figures in this paper
were generated using Mathematica®, Wolfram
Research, Champaign, IL). The number of maxima or
minima in this picture varies by the different ways in
which a string is pinched.”* The string’s oscillation
is due to the superposition (interference) of two travel-
ing or progressing waves:

E(0651) = Eppge Sin(101 — k) + E e sin(wt + kex) (1)

where & is the time-dependent location (displace-
ment) on the ordinate axis, &, iS the amplitude
value, and w and k are the frequency and wave
number, respectively. The cosine wave can also be
selected to account for the oscillation in time between
the amplitude waves (this complementary descrip-
tion is provided in the Appendix). As a result of these
waves’ constructive interference, a standing wave can
be presented using a well-known trigonometric trans-
form called the sine expansion:""”!

<(x;1) = 28 max sin(kx) cos(wr) (2)

The Particle in a Box as a Time-Independent
Analog of the Oscillating String

In contrast with classical waves, only the ampli-
tude waves are applicable for quantum-mechanical

displacemert
101

05H -

length of string

X

-10F

FIGURE 1 Standing waves on an oscillating string. Solid and
dotted lines mark the amplitude waves; dashed lines show the
string shapes between the amplitude positions at a certain
moment of time.

611

particles to meet the requirements set by the
uncertainty principle as discussed above (see the
Appendix for more detail). If time is removed from
consideration (as stressed by the use of the lower
case for ), Eq. (3) is obtained:

Y = Asin(kx) (3)

Unlike Eq. (2) for the oscillating string, the wavefunc-
tion in Eq. (3) does not define the displacement, &(x;t),
at each location and each moment of time, thus satis-
fying the uncertainty principle. Figure 2A-D shows the
first four wavefunctions for the particle in a box. This
figure also demonstrates that the mirror image of the
wave function represented by Eq. (1) with respect
to the x-axis (dashed lines), namely,

Y = —Asin(kx) (4)

satisfies the problem’s boundary conditions (as well
as the other conditions, i.e., being an equally eligible
solution of Schrodinger’s equation as Eq. (3)). Of
course, regardless of the wavefunction’s sign, the
Yy product is positive.

The functions shown in Egs. (3)—(4) may be called
real conjugate wavefunctions because they are simi-
lar to complex conjugate wavefunctions. In both
cases, conjugate functions are mirror images of the
original functions with respect to a given axis (x);
the axis of interest, orthogonal to x, may be either
real (y) or imaginary (i). Both of these states are
essential for the system’s continuity in the 3D space;
the likelihood of the electron taking one of them is 3.

The connection of the quantum particle in a box
and a classical oscillating string is, thus, provided using
Fig. 2. It is the combination of a “traditional” time-inde-
pendent wavefunction with its real conjugate that pro-

vides two amplitudes for the string oscillating in time.

Interference of Radiative Waves

The problem of wave enhancement or cancelation
upon interference (superposition) can be considered
for radiative waves." As a result of a trigonometric
analysis (the details are provided in the Appendix),
the superposition of two waves is described as

[=0L+15L=(<Z/2>)(A*+ B*+24Bcos$) (5)

where A and B are two waves’ amplitudes; Z=p/¢,
the momentum (p) or displacement ratio called

How Wave Interference May Help Explain Wavefunctions
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FIGURE 2 The wavefunctions of the particle in a box shown in solid lines for n = 1-4 (A-D, respectively). The “real conjugates” of these
wavefunctions (mirror images with respect to the x-axis) are shown as dashed lines.

“impedance,” periodically oscillating in time, is
present in Eq. (5) as its average value over the
complete cycle; I designates the wave intensity;
and ¢ is the phase difference between the interfering
waves. Thus, it is the product of two amplitudes
multiplied by the phase difference factor, cos¢,
that defines whether two waves would interfere
constructively or destructively.

Physical Significance of the Yy Product
Besides Probability

Equation (5) is fully applicable for time-
independent waves including periodical wavefunc-
tions, Y, and Y, where n and m are quantum
numbers. Their product, Y., according to Eg.
(5), is key to the magnitude of the statistical waves’
enhancement upon interference.

Based on Eq. (5), the amplitude of the resulting
standing wave will be maximal if ¢ =0, i.e., when
two interfering wave functions of the same
amplitude coincide or, in other words, when a given
wavefunction, V,, interferes with itself to yield
the product, Y., (Fig. 3A). By contrast, if the
phase difference ¢ =, two periodic waves are real

E. I. Kozliak

conjugates (,, and —,,), so they interfere destruc-
tively to cancel each other out (Fig. 3B).

The most interesting case, ¢ =7/2, is presented in
Fig. 3C. The two wave functions neither enhance
nor cancel each other. Figuratively speaking, they
“do not notice” each other, even though they occupy
the same area of space. The word “orthogonal” cap-
tures the spirit of this phenomenon. This 90° phase dif-
ference between V¥, and V,,, where m # n, may be
called “phase orthogonality.” An example of “phase-
orthogonal” functions is a sine and a cosine. The pro-
duct of two such wavefunctions, as an average value
over a complete cycle (or as an integral over a com-
plete cycle for normalized functions), is equal to zero.

Application of the Kronecker Delta

If the mutual lineup of a wavefunction with itself is
not perfect, i.e., if their corresponding maxima or
minima do not occur at the same value of x
(i.e., cos¢ is between zero and ©/2), the maximum
positive interference cannot be achieved. A partial
enhancement would yield a lower amplitude of
the resulting standing wave. However, any nonzero
lower amplitude is impossible, as pointed out by
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©

FIGURE 3 Interference of radiative waves with the phase differ-
ences of (A) zero; (B) «; and (C) /2. The original waves are shown
as dashed lines, whereas the standing waves resulting from their
interference are shown as bold solid lines (the horizontal line in
Part B).

Schrodinger™®” because this would necessitate the
application of work for the wave to keep its energy
constant (i.e., similar to friction in mechanical systems).
Such a wave would not be stable in time by itself.

The phenomenon of “quantum friction,” i.e.,
instability of a system in time, is well-known to
modern physics."' ¥ For infinite time, ie., for
most of the problems relevant to teaching quantum
mechanics and spectroscopy for chemistry students,
quantum friction has to be zero.

Note that the solutions of all basic quantum mech-
anical problems considered in physical chemistry are

613

eligible for this consideration because they are
time-independent, i.e., statistically or effectively
achieved by the corresponding systems. This
approach is fully applicable to spectroscopy only
for “long-time” solutions. Most of the spectroscopic
measurements are done on such a long time-scale
that, given the inherently high frequency of elec-
tronic, vibrational, or rotational motion, infinite time
is a good approximation. Significant “noise” shows
up on a shorter time scale, e.g., NMR in the time
domain; then, of course, time cannot be ignored
unless the data are transferred into the frequency
domain by applying Fourier transforms.

Thus, only two options (described by the
Kronecker delta) are possible for two wavefunctions
occupying the same area of space: it is either a
perfect enhancement (yielding the maximum
amplitude), or orthogonality, with nothing in
between. This is the physical essence of the ¥ * ¥
product and the explanation of the necessity of its
integration over the entire cycle.

The statistical consideration of time-independent
wavefunctions necessitates the integration of this
product over the entire cycle for periodical functions.
If the system’s wavefunction is normalized, it conco-
mitantly yields the particle’s distribution function. In
a historical perspective, Born, being influenced by
Schrodinger’s  papers, specifically  pointed out
that the W*YW product reflects the amplitudes of
Schrodinger’s time-dependent “matter waves,” i.e.,
referring to the case shown in Figs. 1 and 2. This
integral is, thus, equal to the Kronecker delta for
two identical normalized wavefunctions (6=1) or
orthogonal wavefunctions (§=0), depending on
whether m and n in the Y, ", product are equal
to each other or not, respectively.

Both “phase” orthogonality and “spatial” ortho-
gonality (e.g., px, Py, and p, orbitals) reflect, essen-
tially, the same phenomenon: lack of enhancement
of stationary, statistical waves by each other, which
is mandatory for achieving positive interference.

Orthogonality: Expansion to
Quantum Mechanical Problems

General

The principle of a wavefunction’s maximum
enhancement upon its self-interference, with ortho-
gonality as the only alternative (for different quantum

How Wave Interference May Help Explain Wavefunctions
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numbers) can be expanded to basic quantum
mechanical problems. The only adjustment required
is that the y,, " ¥, product is to be integrated over the
entire allowed space rather than over a complete cycle.
A complete cycle, i.e., 2m, defines the entire available
“angular space”; thus, this extension is justified.

For periodic functions, e.g., a particle in a box, the
entire allowed space contains n/2cycles. For non-
periodic functions (e.g., hydrogen atom, harmonic
oscillator), trigonometric considerations are not
applicable. Even for a particle in a box, the concept
of phase difference is not applicable anymore
because the wave functions with different quantum
numbers contain different amounts of cycles. Yet,
when the “box” becomes circular, as for a particle
on a ring, phase orthogonality is valid. The connec-
tion between the linear and circular boxes, essential
for the expansion of the entire cycle to the entire
space, is stressed in the rest of the paper.

Thus, a limitation of the suggested approach is
that the Y, ", product’s physical significance may
be illustrated only by using either space-unrestricted
or circular stationary waves. Phase orthogonality
cannot be shown for nonperiodic cases, to be
replaced with just “orthogonality.”

The Physical Significance of Complex
Functions

The superposition of a complex function, a+ib,
and its conjugate, a-ib, results in vanishing of the com-
plex component, just as a wave and its real conjugate
cancel each other out (Fig. 3B). This treatment allows
for having time in quantum mechanical equations as a
complex exponential function; it vanishes upon its
interference with a conjugate, leaving just the real trig-
onometric component, which is time-independent.

The Y, * ¥, product of a complex function and
its conjugate, equal to a* +b? is real. Thus, the
essential choice between the wave functions’
enhancement or orthogonality depends on the inte-
gration of this function over the entire allowed
space, just as for the above-considered real func-
tions. Note that the b* term “extracts” the physical
essence of the complex variable and contributes to
the mutual enhancement by complex conjugate
functions in their projection to the real space. The
use of complex functions is the mathematical
embodiment of the uncertainty principle; even

E. I. Kozliak

though one cannot define a real wavefunction at
any given moment of time, its statistical picture is
real and valid.

Applications

Energy Quantization

Figure 2A-D shows that, for a particle in a box,
one, two, three, etc., half-waves (which I figuratively
call “bumps” to students) perfectly fit into a given
box. At first glance, this phenomenon may be due
to satisfying the boundary conditions (the wavefunc-
tion cannot have a nonzero value at the box’s edge).
Similarly, the necessity of fitting n half-waves into a
circular box was demonstrated in the seminal
paper of de Broglie[15’16] because otherwise the
wavefunction would not remain single-valued upon
subsequent revolutions around the circle.

To complement this mathematical reason, the
need for quantization may be alternatively shown
through the interference of statistical circular waves.
Perfect matching of nodes is mandated by the
necessity of maximum positive interference (.e.,
exact matching of the wavefunction’s maxima and
minima, as in Fig. 3A), while an imperfect
match would create multiple conjugate functions
with nonmatching nodes.

Due to imperfect enhancement, the product of
these mismatched waves cannot anymore yield the
unity upon integration over the full circle (due to
the nonzero phase difference). However, then, as
shown in the section on Kronecker’s delta, the only
alternative is that it has to be equal to zero, i.e.,
Fig. 3B. Thus, the primary reason for fitting n bumps
into a box, either linear or circular, is due to the
necessity of matching the wavefunctions’ maxima
or minima rather than merely satistfying the boundary
conditions. This important principle will be used in
the next three subsections.

Finding Energy Values

Barrow demonstrated how the principle of fitting
n half-waves of a certain wavelength, 4, into a linear
box of a certain length (a) can illustrate quantiza-
tion."”) He showed that just assuming this principle
allows one to calculate the system’s quantized ener-
gies without solving the Schrodinger equation.

The underlying idea, using the analogy with an
oscillating string, is fitting n bumps into the box’s
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length:

nil/2=a (6)

Then, the wavelength is expressed through
momentum using de Broglie’s relation, A=h/(mv).
Combining these formulas yields the following
equation, after a few algebraic steps:

me? /2(kinetic energy, E) = n*h?*/(8ma?®)  (7)

This is the expression for energy of a quantum
particle unaffected by potential energy.

A similar treatment was provided by Barrow for a
particle on a ring, resulting in the following equation:
me?/2  (kinetic  energy) =n*h?/(8n’ma®) """ Of
course, solving the pertinent differential Schrodinger’s
equation vyields exactly the same solution, thus
providing a verification of this approach.

The Harmonic Oscillator

Fitting a whole number of half-waves into the
entire allowed space can be readily expanded to
any other common quantum mechanical problem
including the harmonic oscillator and hydrogen atom.
Of course, in any of these cases a simple algebraic
way of finding a solution of the Schrodinger
equation, demonstrated in the previous subsection,
is impossible. However, the qualitative shape of the
corresponding wavefunctions can still be predicted
because n alternating maxima and minima are
generated. These maxima and minima should be
centered around the source of potential energy,
e.g., classical turning points for the harmonic
oscillator or the origin for the hydrogen atom.
Symmetry considerations should be applied as well.

The harmonic oscillator must exhibit a single
maximum for the ground state, energy level 1
(Fig. 4). Given that there is only one maximum, it
must be located, out of symmetry considerations, at
x =0. Note the qualitative similarity of the shape of
ground-state wavefunctions for the particle in a
box and harmonic oscillator. The allowed space
(i.e., the “box”) in the harmonic oscillator stretches
from minus infinity to plus infinity. For the first
excited state (energy level 2), there is one minimum
and one maximum located between the origin and
two classical turning points symmetrically situated
around the origin. The introduction of potential
energy at the classical turning points results in a

615

wavefunction

FIGURE 4 Sketches of wavefunctions for the first three energy
levels of the harmonic oscillator. The labels are |, II, and lll for the
first, second, and third energy levels, respectively.

distortion of the original sine function to yield a non-
periodic function, yet retaining a wave-like shape.

For the third quantum level, the combined num-
ber of maxima and minima (i.e., bumps) must be
three, located between the origin and classical turn-
ing points (Fig. 4). The positions of these multiple
crowded maxima and minima should be moving clo-
ser to the turning points for increasing quantum
numbers, which is shown in many textbooks. Note
that the real conjugates of the functions provided
in Fig. 4 are equally valid, so the maxima and minima
switch if =, functions are considered.

The Hydrogen Atom

The n-bumps principle is also applicable to the
hydrogen atom; although, for a valid comparison,
one needs to distinguish between s, p, d, etc. orbitals,
i.e., select and set a certain orbital or azimuthal quan-
tum number, ¢. Given this, positive radial wavefunc-
tions for the lowest-level 1s, 2p, and 3d orbitals must
all have one maximum; the wavefunctions for next
quantum levels, e.g., 2s, 3p, and 4d, must have one
maximum and one minimum, etc. (as shown in
Fig. 5 for 2s and 3p). Any wavefunctions with ¢ >0
start from the origin to account for the forbidden area
of angular space ().

Mathematically, n bumps in the wavefunctions of
higher quantum levels are created by the multipli-
cation of pertinent ground state wavefunctions, with
n=1 [exp(-xz) for the harmonic oscillator and
exp(-x) for the hydrogen atom], by the pertinent
polynomials of (n-D-th power (Legendre and
LaGuerre polynomials, respectively). Note that the

How Wave Interference May Help Explain Wavefunctions
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FIGURE 5 Sketches of the nonnormalized wavefunctions for
low-lying energy levels of the hydrogen atom, radial component
only: (A) 1s, 2s, and 3s orbitals; and (B) 2p and 3p orbitals. The
labels are |, Il, and Il for the first, second, and third energy levels,
respectively.

“wavy” shape of any of these functions is consistent
with the consideration of a particle’s wavefunction
(or its conjugate) as an effective or statistical rep-
resentation of the corresponding quantum particle.
Thus, such wavefunctions may be viewed as period-
ical trigonometric functions (sine or cosine) distorted
by the potential energy specific for each quantum
mechanical problem.

Other Applications

One more use of the oscillating string analogy was
provided by Silbey et al. who showed that the math-
ematical expression of the p, operator can be
obtained from the differential equation of string
oscillation "

Another application of sound waves explaining
the fundamental principle of linear combinations
was suggested by Mortimer.” The same musical
notes obtained on different musical instruments

produce slightly different sounds, due to the small

E. I. Kozliak

instrument-specific contributions of harmonics, i.e.,
waves with higher quantum numbers:

E(xs 1) = Z[byAy sin(nmx/a) sin(wt)) (8)

where by, is a contribution of a sound with a given n, the
number of standing half-waves fitting into the string.

Applied to statistical waves, this principle leads to
simple basis sets, linear combinations of wavefunc-
tions (orbitals for atoms or molecules) with unequal
and variable (under changing conditions) contribu-
tions. It may also be applied to linear combinations
of two different wavefunctions with equivalent par-
ticipation (e.g., orbital hybridization); the principle
of harmony of two different sounds is well-known
in music. Of course, then, in order to generate nor-
malizable statistical distribution functions, the sum
of squares of the coefficients in front of the superim-
posed wavefunctions in Eq. (8) has to be equal to 1,
i.e., satisfying one of the fundamental postulates of
quantum mechanics.

CONCLUSION

The source of energy quantization is interference of
time-independent or stationary waves (wavefunc-
tions), which statistically represent effective quantum
mechanical particles. Depending on the product of
interfering time-independent wavefunctions, either
maximum enhancement (for self-interference) or
no enhancement (orthogonality for two different
wavefunctions) occurs. The shape of wavefunctions
and their fundamental features (symmetry, number,
and tentative location of maxima or minima) may be
intuitively understood by using the proposed principle
of fitting n half-waves into the entire allowed space and
considering the distortion of trigonometric waves by
potential energy, which is specific for a given problem.

ACKNOWLEDGMENTS

The author is immensely grateful to Prof. K.
Thomasson and the students in his physical
chemistry class, R. Cochran, J. Hicks, and E. Kastl, for
drawing the figures. The help of Prof. M. Hoffmann
(UND Chemistry Department) in refining the concepts
presented in this paper is greatly appreciated.
Extremely helpful comments of a reviewer of this
article allowed for a significant improvement of the
presentation and quality of this paper.

616



02: 42 30 January 2011

Downl oaded At:

16.
17.

617

. Kryvohuz, M.; Cao, J.

REFERENCES

. Kozliak, E. I. Convenient chemical symbols describing electronic

excited states. Spectrosc. Lett. 2007, 40(3), 413-427.

. Suits, J. P.; Hypolite, K. L. Use of spectroscopic representations in

student-generated atomic models. Spectrosc. Lett. 2004, 37(3),
245-262.

. Davis, M.; Silverstein, T. R.; Campbell, D. J. Guitar strings as standing

waves: A demonstration. J. Chem. Educ. 2007, 84(8), 1287-1289,
and references therein.

. Mortimer, R. G. Physical Chemistry, 3rd ed.; Elsevier Acad. Press:

Boston, 2008; 630-656.

. Atkins, P.; de Paula, J. Elements of Physical Chemistry, 5th ed.; W.H.

Freeman and Co.: Oxford, 2009; 274-279.

. Folger, T. Is quantum mechanics tried, true, wildly successful, and

wrong? Science 2009, 324(5934), 1512-1513.

. Schrodinger, E. Collected Papers on Wave Mechanics by E.

Schradinger;; (trans. from 2nd German ed.); Chelsea Publishing
Co.: New York, 1978; 66.

. Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on

Physics: Quantum Mechanics; Addison-Wesley Publishing Co.: New
York, 1966; 21.

. Towne, D. H. Wave Phenomena; Addison-Wesley Publishing Co.:

Palo Alto, 1967; 40-49, 70-74.

. Schrédinger, E. Quantisation as a problem of eigenvalues (Part 3).

Ann. Phys. 1926, 80(13), 437-490 (ref. 7 cites pp. 62-101).

The influence of dissipation on the
quantum-classical correspondence: Stability of stochastic trajectories.
J. Chem. Phys. 2009, 130(23), 234107 /1-234107/10.

. Efremov, G. F.; Sharkov, V. V. Quantum statistical theory of radiation

friction of a relativistic electron. Theor. Math. Phys. 2009, 158(3),
406-421.

. Salamon, P.; Hoffmann, K. H.; Rezek, Y.; Kosloff, R. Maximum work

in minimum time from a conservative quantum system. Phys. Chem.
Chem. Phys. 2009, 11(7), 1027-1032.

. Ball, D. W. Spectroscopy is applied quantum mechanics, Part Ill: Intro-

duction to Quantum Mechanics. Spectroscopy 2008, 23(4), 14-17.

. de Broglie, L. Investigations on quantum theory. Ann.de Physique

1925, 3(1), 22 (ref. 16 cites pp. 73-93).

Ludwig, G. Wave Mechanics; Pergamon Press: Oxford, 1968; 45-65.
Barrow, G. M. Physical Chemistry, 6th ed.; McGraw-Hill: New York,
1996; 65.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Silbey, R. J.; Alberty, R. A.; Bawendi, M. G. Physical Chemistry, 4th

ed.; John Wiley & Sons: Cambridge, 2005; 301-302.

. Schrédinger, E. Quantisation as a problem of eigenvalues (Part 1).

Ann. Phys. 1926, 79(4), 361-376 (ref. 7 cites pp. 1-12).
Schrodinger, E. Quantisation as a problem of eigenvalues (Part 2).
Ann. Phys. 1926, 79(6), 489-527 (ref. 7 cites pp. 13-40).
Schrédinger, E. The continuous transition from micro- to
macro-mechanics. Naturwissenschaften 1926, 28, 664-666 (ref. 7
cites pp. 41-44).

Schrédinger, E. On the relation between the quantum mechanics of
Heisenberg, Born, and Jordan, and that of Schrédinger. Ann. Phys.
1926, 79(8), 734-756 (ref. 7 cites pp. 44-61).

Schrodinger, E. Quantisation as a problem of eigenvalues (Part 4).
Ann. Phys. 1926, 81(18), 109-139 (ref. 7 cites pp. 102-123).
Schrodinger, E. The exchange of energy according to wave
mechanics. Ann. Phys. 1927, 83, (ref. 7 cites pp. 137-146).

Mehra, J. Erwin Schroédinger and the rise of quantum mechanics: |II.
The creation of wave mechanics. Foundations of Physics 1987,
17(12), 1141-1188.

Rohrlich, F. Schrédinger and the interpretation of quantum
mechanics. Foundations of Physics 1987, 17(12), 1205-1220 and
references therein.

Lochak, G. Convergence and divergence between the ideas of de
Broglie and Schrodinger in wave mechanics. Foundations of Physics
1987, 17(12), 1189-1203.

Cook, D. B. Schrodinger’'s mechanics. In World Scientific Lecture
Notes in Physics; Vol. 28; World Scientific: Singapore, 1988.

Mehra, J.; Rechenberg, H. The Historical Development of Quantum
Theory: Vol. 4, Part 1. The Fundamental Equations of Quantum
Mechanics 1925-1926: Part 2. The Reception of New Quantum
Mechanics 1925-1926; Springer-Verlag: New York, 1982.

Mehra, J.; Rechenberg, H. The Historical Development of Quantum
Theory: Vol. 6. The Completion of Quantum Mechanics
1926-1941: Part 1. The Probability Interpretation and the Statistical
Transformation Theory, the Physical Interpretation, and the Empirical
and Mathematical Foundations of Quantum Mechanics 1926-1932;
Springer-Verlag: New York, 2000.

Mehra, J.; Rechenberg, H. The Historical Development of
Quantum Theory. Vol. 6. The Completion of Quantum Mechanics
1926-1941: Part 2. The Conceptual Completion and the Extensions
of Quantum Mechanics 1932-1941; Springer-Verlag: New York,
2000.

How Wave Interference May Help Explain Wavefunctions



